Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Biomed Sci ; 29(1): 94, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117163

ABSTRACT

BACKGROUND: Among various complications of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), renal complications, namely COVID-19-associated kidney injuries, are related to the mortality of COVID-19. METHODS: In this retrospective cross-sectional study, we measured the sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties, using liquid chromatography-mass spectrometry in 272 urine samples collected longitudinally from 91 COVID-19 subjects and 95 control subjects without infectious diseases, to elucidate the pathogenesis of COVID-19-associated kidney injuries. RESULTS: The urinary levels of C18:0, C18:1, C22:0, and C24:0 ceramides, sphingosine, dihydrosphingosine, phosphatidylcholine, lysophosphatidylcholine, lysophosphatidic acid, and phosphatidylglycerol decreased, while those of phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, and lysophosphatidylethanolamine increased in patients with mild COVID-19, especially during the early phase (day 1-3), suggesting that these modulations might reflect the direct effects of infection with SARS-CoV-2. Generally, the urinary levels of sphingomyelin, ceramides, sphingosine, dihydrosphingosine, dihydrosphingosine L-phosphate, phosphatidylcholine, lysophosphatidic acid, phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylglycerol, phosphatidylinositol, and lysophosphatidylinositol increased, especially in patients with severe COVID-19 during the later phase, suggesting that their modulations might result from kidney injuries accompanying severe COVID-19. CONCLUSIONS: Considering the biological properties of sphingolipids and glycerophospholipids, an understanding of their urinary modulations in COVID-19 will help us to understand the mechanisms causing COVID-19-associated kidney injuries as well as general acute kidney injuries and may prompt researchers to develop laboratory tests for predicting maximum severity and/or novel reagents to suppress the renal complications of COVID-19.


Subject(s)
COVID-19 , Sphingolipids , Humans , COVID-19/complications , Glycerophospholipids , Sphingosine , Phosphatidylethanolamines , SARS-CoV-2 , Phosphatidylserines , Retrospective Studies , Cross-Sectional Studies , Ceramides , Kidney , Phosphatidylglycerols , Phosphatidylcholines
2.
Ann Med ; 54(1): 3189-3200, 2022 12.
Article in English | MEDLINE | ID: covidwho-2106905

ABSTRACT

INTRODUCTION: In order to identify therapeutic targets in Coronavirus disease 2019 (COVID-19), it is important to identify molecules involved in the biological responses that are modulated in COVID-19. Lysophosphatidic acids (LPAs) are involved in the pulmonary inflammation and fibrosis are one of the candidate molecules. The aim of this study was to evaluate the association between the serum levels of autotaxin (ATX), which are enzymes involved in the synthesis of lysophosphatidic acids. MATERIAL AND METHODS: We enrolled 134 subjects with COVID-19 and 58 normal healthy subjects for the study. We measured serum ATX levels longitudinally in COVID-19 patients and investigated the time course and the association with severity and clinical parameters. RESULTS: The serum ATX levels were reduced in all patients with COVID-19, irrespective of the disease severity, and were negatively associated with the serum CRP, D-dimer, and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels. DISCUSSION: Considering the biological properties of LPAs in the pulmonary inflammation and fibrosis, modulation of ATX might be compensatory biological responses to suppress immunological overreaction especially in the lung, which is an important underlying mechanism for the mortality of the disease. CONCLUSIONS: COVID-19 patients showed a decrease in the serum levels of ATX, irrespective of the disease severity. Key MessagesAutotaxin (ATX) is an enzyme involved in the synthesis of lysophosphatidic acid (LPA), which has been reported to be involved in pulmonary inflammation and fibrosis. Patients with COVID-19 show decrease in the serum levels of ATX. Modulation of ATX might be compensatory biological responses to suppress immunological overreaction.


Subject(s)
COVID-19 , Phosphoric Diester Hydrolases , Humans , COVID-19/blood , Fibrosis , Lung , Lysophospholipids , Phosphoric Diester Hydrolases/blood , SARS-CoV-2
3.
Clin Transl Med ; 12(10): e1069, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2059366

ABSTRACT

BACKGROUND: A heterogeneous clinical phenotype is a characteristic of coronavirus disease 2019 (COVID-19). Therefore, investigating biomarkers associated with disease severity is important for understanding the mechanisms responsible for this heterogeneity and for developing novel agents to prevent critical conditions. This study aimed to elucidate the modulations of sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties. METHODS: We measured the serum sphingolipid and glycerophospholipid levels in a total of 887 samples from 215 COVID-19 subjects, plus 115 control subjects without infectious diseases and 109 subjects with infectious diseases other than COVID-19. RESULTS: We observed the dynamic modulations of sphingolipids and glycerophospholipids in the serum of COVID-19 subjects, depending on the time course and severity. The elevation of C16:0 ceramide and lysophosphatidylinositol and decreases in C18:1 ceramide, dihydrosphingosine, lysophosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol were specific to COVID-19. Regarding the association with maximum severity, phosphatidylinositol and phosphatidylcholine species with long unsaturated acyl chains were negatively associated, while lysophosphatidylethanolamine and phosphatidylethanolamine were positively associated with maximum severity during the early phase. Lysophosphatidylcholine and phosphatidylcholine had strong negative correlations with CRP, while phosphatidylethanolamine had strong positive ones. C16:0 ceramide, lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine species with long unsaturated acyl chains had negative correlations with D-dimer, while phosphatidylethanolamine species with short acyl chains and phosphatidylinositol had positive ones. Several species of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin might serve as better biomarkers for predicting severe COVID-19 during the early phase than CRP and D-dimer. Compared with the lipid modulations seen in mice treated with lipopolysaccharide, tissue factor, or histone, the lipid modulations observed in severe COVID-19 were most akin to those in mice administered lipopolysaccharide. CONCLUSION: A better understanding of the disturbances in sphingolipids and glycerophospholipids observed in this study will prompt further investigation to develop laboratory testing for predicting maximum severity and/or novel agents to suppress the aggravation of COVID-19.


Subject(s)
COVID-19 , Sphingolipids , Animals , Biomarkers , Ceramides , Glycerophospholipids , Histones , Lipopolysaccharides , Lysophosphatidylcholines , Mice , Phosphatidylcholines , Phosphatidylethanolamines , Phosphatidylglycerols , Phosphatidylinositols , Sphingomyelins , Thromboplastin
4.
Nat Commun ; 13(1): 4399, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-2042318

ABSTRACT

The coronavirus membrane protein (M) is the most abundant viral structural protein and plays a central role in virus assembly and morphogenesis. However, the process of M protein-driven virus assembly are largely unknown. Here, we report the cryo-electron microscopy structure of the SARS-CoV-2 M protein in two different conformations. M protein forms a mushroom-shaped dimer, composed of two transmembrane domain-swapped three-helix bundles and two intravirion domains. M protein further assembles into higher-order oligomers. A highly conserved hinge region is key for conformational changes. The M protein dimer is unexpectedly similar to SARS-CoV-2 ORF3a, a viral ion channel. Moreover, the interaction analyses of M protein with nucleocapsid protein (N) and RNA suggest that the M protein mediates the concerted recruitment of these components through the positively charged intravirion domain. Our data shed light on the M protein-driven virus assembly mechanism and provide a structural basis for therapeutic intervention targeting M protein.


Subject(s)
COVID-19 , SARS-CoV-2 , Cryoelectron Microscopy , Humans , Membrane Proteins , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL